(19) INDIA

(22) Date of filing of Application :26/07/2023

(43) Publication Date : 01/09/2023

(54) Title of the invention : MONKEYPOX DETECTION USING MODIFIED VGG16 AND CUSTOM CNN MODEL

 (51) International classification (86) International Application No Filing Date (87) International Publication No (61) Patent of Addition to Application Number Filing Date (62) Divisional to Application Number Filing Date 	:G06N0003040000, G06N0020200000, G06N002000000, G06N0003080000, G06K009620000 :PCTT// :01/01/1900 : NA :NA :NA :NA :NA	 (71)Name of Applicant : (71)Name of Applicant : (71)St. Martin's Engineering College Address of Applicant : SM Artin's Engineering College, Dhulapally Kompally Secundrabad (72)Name of Applicant : NA (72)Name of Inventor : (73)Name of Inventor : (74)Name of Inventor : (75)Name of Inventor : (75)Name of Inventor : (74)Name of Inventor : (75)Name of Inventor : (76)Name of Applicant : SM Artin's Engineering College, Dhulapally Kompally Secunderabad
---	--	---

(57) Abstract :

Monkeypox virus is emerging slowly with the decline of COVID-19 virus infections around the world. People are afraid of it, thinking that it would appear as a pandemic like COVID-19. As such, it is crucial to detect them earlier before widespread community transmission. AI-based detection could help identify them at the early stage. In this work, we aim to compare 13 different pre-trained deep learning (DL) models for the Monkeypox virus detection. For this, we initially fine-tune them with the addition of universal custom layers for all of them and analyse the results using four well-established measures: Precision, Recall, F1-score, and Accuracy. After the identification of the best-performing DL models, we ensemble them to improve the overall performance using a majority voting over the probabilistic outputs obtained from them. We perform our experiments on a publicly available dataset, which results in average Precision, Recall, F1-score, and Accuracy of 85.44%, 85.47%, 85.40%, and 87.13%, respectively with the help of our proposed ensemble approach. These encouraging results, which outperform the state-of-the-art methods, suggest that the proposed approach is applicable to health practitioners for mass screening.

No. of Pages : 12 No. of Claims : 6